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Abstract9

Financial fraud detection is an important task in ensuring the integrity and security of finan-10

cial systems. In recent years, it has been shown that graph learning, which utilizes the relational11

structure of data, can considerably enhance the detection of fraudulent financial activity by ac-12

curately modeling the complex patterns and relationships inherent in financial transactions.13

In this work, we provide a comprehensive survey on the emerging application of graph learn-14

ing techniques in detecting and combating financial fraud that can serve as a guidepost for15

researchers and practitioners interested in leveraging the power of graph learning to create a16

safer, more secure financial environment. Specifically, we start by introducing the fundamental17

concepts of graph learning, outlining their unique advantages over traditional machine learn-18

ing techniques in the context of financial fraud detection. It is worth mentioning that graph19

learning techniques enable end-to-end training from relational data input to fraud prediction,20

eliminating the need for additional feature engineering. We then delve into a systematic review21

of the recent advancements and methodologies in applying graph learning to various financial22

fraud scenarios, such as credit card fraud, insurance fraud, and money laundering. Furthermore,23

we provide unique insights regarding several critical challenges, such as data privacy, scalability,24

and the dynamic nature of financial networks, that are faced when implementing graph learn-25

ing models in real-world financial ecosystems. We show that practical applications of graph26

learning still suffer from computational complexity and lack of interpretability, and we offer a27

forward-looking perspective on potential research directions and improvements that can boost28

the effectiveness of graph learning applied to financial fraud detection.29

Introduction30

The considerable losses resulting from financial fraud have consistently drawn the focus of academia,31

industry, and regulatory communities. As discussed, fighting financial fraud is beneficial for sustain-32
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able economic growth, which is one of the United Nations’ sustainable development goals (SDGs)33

[1, 2]. For instance, online payment systems are critical in combating climate change, given that34

they can help to cut 400 million metric tons of annual carbon emissions by reducing the use of35

physical currency. However, fraudulent behaviors targeting online payments and credit card trans-36

actions have inflicted financial harm upon online payment users and hindered the promotion of online37

payment [3]. In the financial area, fraud behavior is widely modeled and discussed. For instance,38

Tergiman and Villeval experimentally studied the nature of lies and designed the ‘Announcement39

Game’ to evaluate how the introduction of reputation affects lies [4]. Also, Liu et al. studied40

the involvement of AI in credit scoring for loan lenders and found indications that AI techniques41

will benefit different aspects of lending, including fraud detection [5]. In addition, researchers have42

studied theoretical models in specific scenarios that are easily affected by fraud behaviors, such as43

mobile app ranking fraud [6–9]. Designing efficient and effective financial fraud detection methods44

can reduce the operating costs of service providers, protect the property of bank users, and help to45

establish a more sustainable finance system.46

Due to the importance of financial fraud detection, a number of methods have been proposed in47

existing literature, falling into 2 broad categories: rule-based approaches and machine-learning-based48

approaches. Generally speaking, rule-based methods rely on a variety of rules generated by domain49

experts to identify suspicious behaviors. Though rule-based approaches are usually highly efficient50

and accurate in some scenarios, it is difficult for experts to identify proper rules when the context51

is complicated and dynamic. Moreover, fraudsters can learn the underlying logic of rules and then52

develop corresponding strategies to fool the system. In recent years, many machine-learning-based53

methods, such as logistic regression, decision tree, and support vector machine, have been developed54

to train models from historical data. To better capture the interrelation among the financial data55

(e.g., transactions) and identify potential fraud behaviors, graphs have been widely used to model56

financial activities. Moreover, in addition to the traditional machine learning models, deep learning57

techniques have been applied in various applications, such as anti–money laundering and credit card58

fraud detection, and achieved outstanding performance, thanks to the advance of graph machine59

learning.60

Motivations61

Traditional isolated fraud events have evolved into intricate networks of fraudulent activities. The62

sophistication of these activities, coupled with the massive and scattered nature of financial data,63

poses considerable challenges to existing fraud detection methods. In recent years, graph learning64

has emerged as a potential solution for addressing financial fraud effectively. By modeling entities65

as nodes and relationships as edges, graph learning techniques can capture complex patterns and66

relationships in the data, thus they are particularly suited for detecting organized fraud activities.67

Therefore, it is worthwhile to discuss the challenges in the use of graph learning in financial fraud68

detection, such as the sensitivity and complexity of graph data, as well as the interpretability and69

robustness of models based on graph learning, with some promising research directions in this70

important area.71
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Contributions72

The main contributions of this work are summarized as follows.73

1. A comprehensive analysis of applications of graph learning in the field of financial fraud de-74

tection is presented, highlighting their advantages over traditional approaches. We stress the75

novelty and adaptability of introducing graph learning in fraud detection and how it can im-76

prove traditional machine-learning-based and rule-based methods.77

2. Financial fraud detection methods based on graph learning, including unsupervised, semisu-78

pervised, and supervised techniques, are categorized. The mechanisms and applications of each79

method are discussed in detail to show their advantages and availability in different scenarios.80

3. Future research directions for financial fraud detection based on graph learning are discussed81

according to their desired features, including their dependability, scalability, and robustness,82

which are eagerly anticipated in modern financial fraud research trends.83

Roadmap84

In the next section, we provide the background of the problem of financial fraud detection and85

graph learning techniques, as well as the categorization of existing approaches. Then we introduce86

representative techniques in unsupervised approaches, semisupervised approaches, and supervised87

approaches. Finally, we highlight the remaining challenges and future research directions and share88

our conclusions.89

Background90

In this section, we first introduce the background of machine learning approaches for financial fraud91

detection, with a focus on graph-empowered approaches. We then introduce fundamental concepts92

of graph learning. Finally, we provide the classification of the introduced techniques.93

Financial fraud detection via machine learning94

Recent research in financial fraud detection can be broadly categorized into rule-based methodologies95

and machine-learning-based methodologies. For instance, Seeja and Zareapoor proposed a rule-based96

method for extracting association-based clues for detecting fraud [10]. Balagolla et al. proposed97

a blockchain-based approach to prevent fraudulent transactions [11]. Weinmann et al. utilized98

trace data to detect fraud by analyzing movements captured via a computer mouse [12]. Many99

machine-learning-based approaches have been proposed to help detect financial fraud. For instance,100

Fiore et al. studied feature extraction using neural networks and developed supervised classifiers to101

identify 362 fraudulent transactions [13]. Xiao et al. introduced a nonlinear optimization model to102

generate black-box attacks and evaluate the performance of different machine-learning–based credit103

card fraud detection models [14]. Xu et al. extracted additional categories of behavioral features104

from peer-to-peer lending transaction data, aiming to enhance various performance metrics in fraud105
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detection [15]. Additionally, anomaly detection via machine learning techniques can also provide106

insights for fraud detection in the financial area [16–20]. In recent years, advanced machine learning107

techniques, such as graph representation learning, have shown superior performance in financial108

fraud detection [21, 22]. Therefore, existing machine-learning-based fraud detection solutions can109

be classified into graph-based and non-graph-based approaches. For instance, Fu et al. in 2016110

studied the usage of automatic feature engineering in a convolutional neural network (CNN) [23].111

Recently, financial data have been modeled by graphs, and graph neural network techniques have112

been deployed to detect financial fraud behaviors. For example, in 2020, Cheng et al. proposed a113

graph neural network model via spatiotemporal attention mechanism for the detection of fraudulent114

credit card transactions [24], and in 2021, Jing et al. proposed an effective learning method based115

on graph neural networks for credit card fraud detection with few data samples [25].116

Graph empowered financial fraud detection117

The realm of financial systems has witnessed profound changes in both structure and complexity118

over the past few decades. An important driver of this evolution is the intricate interconnectiv-119

ity established between financial entities, transactions, and activities. Graph theory, a branch of120

mathematics dealing with networks of interconnected nodes and edges, offers a robust framework121

to represent and analyze this complex web of financial interdependencies. Research in graph theory122

and its application has been very active. For example, Zhou et al. proposed a novel “reduce-solve-123

combine” search strategy that integrates a problem reduction mechanism to effectively tackle the124

common challenge of identifying critical nodes [26]. The surge in financial malpractice has neces-125

sitated the exploration of advanced techniques, such as graph neural networks (GNNs), to identify126

and combat fraudulent activities within these interconnected financial systems.127

The following are 2 representative financial applications that can greatly benefit from the mod-128

eling and analytical capabilities of graph structures:129

• Networked-loan fraud detection: In a financial ecosystem, the manifestation of loans often en-130

tails a series of transactions and relationships between various entities, such as banks, borrow-131

ers, guarantors, companies, and intermediary organizations. By constructing a graph wherein132

entities are represented as nodes and transactions or relationships as edges, one can effectively133

capture the patterns and anomalies associated with potential fraudulent loan activities. For134

instance, a closed-loop of entities lending to each other without clear business justification135

could indicate a circular lending scheme, a common strategy to illicitly inflate assets or siphon136

off funds. As reported, companies participating in a real-world loan network are dynamic and137

complex [27]. Graph learning models, with their capacity to consider relational dependencies,138

offer a promising avenue for detecting such sophisticated networked-loan frauds that might139

remain elusive to conventional detection techniques.140

• Group-based money-laundering detection: Money laundering, the act of disguising the origins141

of illegally obtained money, typically involves intricate transactional networks to obfuscate142

the trail of illicit funds. Group-based money laundering involves coordinated efforts by a143

consortium of individuals or entities to launder money in a manner that evades detection.144
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Representing financial transactions as a graph enables the identification of suspicious clusters145

or subgraphs where the patterns of transactions deviate from legitimate behavior. Graph146

learning models can be trained to recognize these anomalous patterns and to capture the147

relational dependencies between entities, thereby spotlighting potential laundering groups as148

validated [21].149

In summary, as financial frauds grow in complexity and cunning, the development of methods that150

leverage the topological and relational properties of graphs, in conjunction with the power of graph151

learning models, is a promising frontier in the fight against these malicious activities. This survey152

aims to delve deeper into the methodologies and breakthroughs surrounding this interdisciplinary153

confluence of finance and graph neural networks.154

Table 1: Categories, models, applications, and datasets of graph learning for financial fraud detec-
tion.

Category Model Application Dataset(s)

Unsupervised
FlowScope [28] Anti–money laundering (see cited paper)
AntiBenford [29] Anti–money laundering Ethereum

Semisupervised

GTAN [22] Credit card fraud detection Amazon, YelpChi, other (see cited paper)
Federated metalearning [30] Credit card fraud detection (see cited paper)

Semi-GNN [31] Credit card fraud detection AliPay
InfDetect [32] Insurance fraud detection Ant Financial Services

Scalable graph learning [33] Anti–money laundering (see cited paper)
GraphSense [34] Anti–money laundering Bitcoin ransomware

Supervised

Tem-GNN [35] Credit/loan risk assessment AliPay
HGAR [36] Credit/loan risk assessment Unspecified commercial bank in Asia
DGANN [37] Credit/loan risk assessment Unspecified Korean payment service provider
ST-GNN [38] Loan default analysis AliPay
AMG-DP [39] Loan default analysis Ant Credit Pay

Network learning [40] Insurance fraud detection Ant Finance
PC-GNN [41] Credit card fraud detection Amazon, YelpChi

MAHINDER [42] Credit card fraud detection AliPay
HACUD [43] Credit card fraud detection Ant Credit Pay
GAGNN [21] Anti–money laundering Amazon, YelpChi, UnionPay

Scope155

This review focuses on the application of graph learning techniques in the domain of financial fraud156

detection. In order to structure our exploration and understand the evolving landscape of fraud157

detection methodologies based on graph learning, we adopt a taxonomy based on the nature of the158

learning paradigms employed, as shown in Table 1.159

• Unsupervised graph learning techniques: Techniques in this category do not rely on labeled160

datasets for training. They aim to capture intrinsic patterns and anomalies within financial161

transaction graphs. By identifying deviations from normative behaviors, these models present162

avenues for uncovering novel, previously unidentified fraudulent strategies.163

• Semisupervised graph learning techniques: Situated between the supervised and unsupervised164

paradigms, these techniques employ a blend of labeled and unlabeled data. Their primary165
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advantage lies in their ability to leverage vast amounts of unlabeled data while utilizing a166

limited amount of labeled instances to guide the learning process. They often produce more167

generalizable models that can detect nuanced fraudulent patterns.168

• Supervised graph learning techniques: This category encompasses methodologies where graph-169

based models are trained with labeled data comprising instances of both genuine and fraudulent170

financial activities. By leveraging the annotated datasets, these models aim to learn patterns171

and relationships indicative of fraud and to offer high precision in detecting malicious activities.172

While the aforementioned taxonomy provides a clear and concise categorization, it is worth173

noting that the landscape of graph learning applications in fraud detection is vast and multifaceted.174

Several alternative taxonomies can be devised to characterize the diverse methodologies in this area.175

For instance:176

• Based on graph construction: It is possible to categorize methods depending on how their177

graphs are constructed (e.g., static vs. dynamic, weighted vs. unweighted, or multilayered vs.178

single-layered).179

• By fraud domain application: Techniques could also be grouped based on the specific financial180

fraud applications they target (e.g., credit card fraud, insider trading, or digital currency181

scams).182

• Considering graph learning framework: Categorization could be based on the underlying graph183

learning framework (e.g., GraphSAGE, DeepWalk, or hybrid methods with tree-based machine184

learning methods).185

As we venture into the depths of methodologies for financial fraud detection based on graph186

learning, it is paramount to acknowledge the diversity and richness of the techniques and their187

underlying principles. This survey, while emphasizing the supervised vs. semisupervised vs. unsu-188

pervised taxonomy, will touch upon the aforementioned categories, aiming to offer a comprehensive189

and holistic overview of the field.190

Unsupervised Approaches191

Overview192

The unsupervised paradigm of graph learning techniques for financial fraud detection primarily193

focuses on the discovery of underlying patterns without the need for labeled data. By leveraging194

intrinsic properties and anomalies within financial transaction graphs, unsupervised graph learning195

methods offer the potential to unearth novel and sophisticated fraud strategies that might elude196

supervised techniques.197

A crucial application benefiting from these unsupervised techniques is anti–money laundering,198

where the absence of predefined fraud patterns demands adaptable and evolving detection mecha-199

nisms. Although in this review, the unsupervised approaches are for anti–money laundering, they200

can be applied to fraud detection and risk assessment as well.201
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Anti–money laundering202

In this section, 2 related works on anti–money laundering are discussed [28, 29]. Both of them203

introduce new algorithms to detect abnormal financial activities in graph data. They both introduce204

novel criteria into the task and are more efficient than all other existing methods.205

FlowScope [28]206

This paper addresses the detection of money laundering in bank transfer networks, highlighting207

the lack of flow tracking in current methods and inadequate theoretical guarantees. It introduces208

the FlowScope algorithm, which models the money transfer network as a graph G = (V,E), where209

V = X ∪ W ∪ Y represents the set of accounts. Here, W denotes the inner bank accounts, while210

X and Y correspond to outer accounts receiving net inflows and outflows, respectively. Each edge211

eij ∈ E represents the aggregate monetary transfer from account vi to vj . The algorithm tracks212

transaction flows from source to destination, focusing on large deposits, internal transfers, and213

withdrawals, which are harder for fraudsters to hide. FlowScope also aims to predict intermediary214

layers in laundering schemes, using a maximum transaction step limit to mitigate risks. A novel215

density-based metric in FlowScope ensures efficient detection of dense money flows and caps the216

amount fraudsters can transfer. The algorithm proves more effective than existing benchmarks in217

various tests, and has a computational complexity nearly linear with respect to transaction volume.218

• Anomalousness of ML for k-partite subgraph:219

Anomalous flow is characterized as flow from a node set A, through single or multiple layers220

of intermediate accounts M , to a different node set C. For an intermediary account vi, let221

fi(S) and qi(S) denote the lower and upper bounds of the cumulative weighted out-degree and222

in-degree with respect to node group S ⊆ V . The anomalousness metric is defined as:223

gk(S) =
1

|S|

k−2∑
l=1

∑
vi∈Ml

fi(S)− λ(qi(S)− fi(S)), (1)

or equivalently,224

gk(S) =
1

|S|

k−2∑
l=1

∑
vi∈Ml

(1 + λ)fi(S)− λqi(S), k ≥ 3, (2)

where λ (the imbalance cost rate) quantifies the adversity fraudsters encounter per unit of225

retention or shortfall, representing the cost of concealment.226

• FlowScope algorithm:227

The FlowScope algorithm seeks the optimal subset S that maximizes g(S). Initially, it con-228

structs a priority hierarchy for nodes in S, where each node vi is assigned a weight or priority,229

defined as:230
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wi(S) =

fi(S)− λ
1+λqi(S), if vi ∈ Ml

di(S), if vi ∈ A ∪ C,
(3)

where di(S) denotes a specified degree function for boundary accounts in A ∪ C.231

AntiBenford subgraph framework [29]232

This paper proposes the AntiBenford subgraph framework, which aims to detect abnormal sub-233

graphs in financial networks. Its goal is to identify a group of nodes within a large transaction or234

financial graph that considerably diverges from Benford’s law, a principle that describes the expected235

distribution of the first digit of each number among data. The framework utilizes a dense subgraph236

discovery algorithm to identify these anomalous subgraphs, which are characterized by both their237

edge density and their deviation from Benford’s law. With adequate experiments, the AntiBenford238

subgraph framework was proven to be able to detect anomalies in real-world networks that other239

anomaly detection strategies based on graphs may not notice.240

• Anomaly Score:241

For each vertex v ∈ V in a financial network G = (V,E), an anomaly score s(v) is defined242

using a χ2 score compared to Benford’s distribution:243

s(v) = Σ9
d=1

(Xu
d − E(Xu

d ))
2

E(Xu
d )

, (4)

where Xu
d is the number of transactions, or edges in the graph, related to u whose first digit244

is d.245

• AntiBenford Subgraph Detection:246

The AntiBenford subgraph detection algorithm is based on the above anomaly score. First,247

the score of each vertex is computed. Then edge e(u, v) is weighted using function f(u, v) =248 √
s(u) · s(v). Then, most of the densest subgraph problem is solved by minimizing the ob-249

jective maxS⊂V
Σf(u,v)

|S| , which represents a subgraph with large average weight for each edge.250

Another objectivemaxS⊂V
e(S)+Σs(v)

|S| is utilized to avoid including vertices that have low scores251

themselves but have higher degree towards an anomalous set of nodes.252

Semisupervised Approaches253

Overview254

Semisupervised graph learning approaches in the domain of financial fraud detection leverage the255

strength of both labeled and unlabeled data to uncover and predict fraudulent activities. This hy-256

brid approach provides a robust framework for scenarios where labeled data is limited, yet unlabeled257

transactions are abundant. By combining knowledge of known instances of fraud with the intrinsic258
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patterns present in the broader dataset, semisupervised graph learning techniques have demon-259

strated remarkable accuracy and adaptability. Three prominent applications that have substantially260

benefited from semisupervised graph learning techniques are:261

• Credit card fraud detection: In this domain, the rapid influx of transaction data often results262

in a scenario where only a fraction of the data is labeled, typically the confirmed fraud cases.263

Semisupervised methods can bridge this gap, effectively using the limited labeled data to guide264

the model’s learning from the vast swaths of unlabeled transactions, identifying potentially265

suspicious activities that might have otherwise been overlooked.266

• Insurance fraud detection: Insurance fraud encompasses a wide range of illicit activities, from267

exaggerated claims to false information on policy applications. As in other domains, labeled268

instances of insurance fraud are scarce compared to the volume of overall claims and applica-269

tions. Semisupervised approaches adeptly analyze patterns within this largely unlabeled data,270

helping to identify fraudulent claims or applications by learning from the smaller number of271

known fraud cases. This approach is particularly effective in adapting to new methods of fraud272

that constantly emerge in the insurance sector.273

• Anti–money laundering (AML): Money laundering schemes often manifest as intricate patterns274

that subtly deviate from normative behaviors. While there might be known instances or275

patterns of money laundering, the ever-evolving tactics used by perpetrators demand a more276

flexible detection mechanism. Here, semisupervised graph learning techniques prove invaluable,277

given that they can extrapolate from known laundering patterns to detect newer, subtler278

schemes in the broader, mostly unlabeled dataset.279

The versatility and adaptability of semisupervised graph learning techniques, which cater to280

diverse applications and constantly evolving threats, make them a cornerstone in the modern arsenal281

against financial fraud.282

Credit card fraud detection283

Here we introduce Semi-GNN [31], federated metalearning [30], and the gated temporal atten-284

tion network (GTAN) [22]. Semi-GNN uses graph-attention networks for financial fraud detection.285

GTAN achieved the best performance in both semisupervised and supervised fraud detection tasks,286

according to the experimental results reported in [22].287

Semi-GNN [31]288

Current financial fraud detection methods such as neural networks [44] and SVM [45] mainly use289

machine learning to identify fraud patterns, focusing on users’ statistical features from profiles,290

behaviors, and transactions. However, these methods often overlook user interactions, which are291

crucial in financial settings. Traditional machine learning approaches, which use models such as292

logistic regression or neural networks, fail to consider these interactions and the rich data they293

offer, such as social connections and merchant transactions. Additionally, most fraud detection294
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data is unlabeled, a challenge not fully addressed by existing graph-based methods, which also lack295

interpretability. Semi-GNN addresses these issues by leveraging both labeled and unlabeled data296

for fraud detection, bridging supervised and unsupervised learning. It confronts the challenge of297

integrating sparse labeled data with abundant unlabeled data to enhance detection performance298

using novel techniques.299

• Low-level view-specific user embedding:300

hu
k = σ

∑
i∈Nu

v

a
(k)
ui W

(k)xi

 , (5)

where Nu
v is the set of neighbors of user u in the v-th view-specific graph, a

(k)
ui is the attention301

coefficient between user u and neighbor i in the k-th layer, W (k) is the weight matrix in the302

k-th layer, and xi is the input feature of neighbor i. The function σ is a nonlinear activation303

function.304

• High-level view-specific user embedding:305

hu
L = σ

(
L∑

k=1

ϕkh
u
k

)
, (6)

where L is the number of layers, hu
k is the low-level embedding of user u in the k-th layer, and306

ϕk is the layer-specific weight. The function σ is a nonlinear activation function.307

Federated metalearning [30]308

The publicly available datasets for fraudulent credit card detection are imbalanced and limited.309

Approximately 2% of all credit card transactions are associated with fraudulent activities. Owing310

to concerns related to data security and privacy, individual banks are typically unwilling to share311

their transaction datasets with one another. Moreover, traditional techniques [23, 46] neglect the312

exploration of the relationships among training samples. They focus on the comparison with samples313

from different classes.314

To tackle these problems, the paper proposes a novel metalearning-based model for the task315

of detecting fraudulent credit card activities. This model leverages a federated learning strategy.316

This approach enables various banks to collectively train a shared model while maintaining the317

privacy of their imbalanced training data, which is stored within their individual private databases.318

The proposed approach demonstrates notably improved performance in comparison to state-of-the-319

art methods when evaluated on 4 publicly available datasets. The paper also introduces a novel320

metalearning-based classifier to effectively learn discriminative feature extraction on unseen class321

samples. This strategy delivers remarkably superior performance beyond other metalearning-based322

methods.323

• Feature extraction model: The paper uses a “K-tuplet” (K-tuple) network utilizing ResNet-34324

as the feature extraction tool. The output of this model is considered to be network features.325
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The feature extraction model, denoted as fnetwork, produces feature maps to represent the326

feature extraction function.327

• Relation model: The relation model, denoted as Jrelation, depicts the similarity between the328

support set Dcsupport and the query set Dcquery . The relation model takes the network features,329

applies a sigmoid function, and outputs similarity scores.330

• Federated metalearning framework: The paper applies federated learning to facilitate the col-331

laborative sharing of datasets among different banks, enabling the construction of an efficient332

fraud detection model without compromising the privacy of each bank’s customers. The ob-333

jective loss function is defined as:334

min l(xi; yi;w), where l(xi; yi;w) =
1

nc

∑
i∈Di

Lcrelation(xic ; yic ;w). (7)

Here, nwhole =
∑C

c=1 nc represents all the data samples involved in the whole process. Lcrelation335

is the loss function for the relation model.336

• K-tuple network: An enhanced metric learning approach, referred to as the deep K-tuple337

network, has been developed. This network extends the capabilities of the triplet network by338

enabling simultaneous comparisons with K negative samples within each minibatch.339

• Federated learning: The paper uses a horizontal federated learning framework, which is used in340

scenarios where datasets have similar feature space but differ in samples. The server initializes341

all parameters of the fraud detection model. At each communication round t, a random fraction342

seed of banks is selected. These banks establish direct communication with the server, retrieve343

the latest global model parameters, and compute the average gradient of the loss function344

fc using their respective private datasets at the current fraud detection model parameters,345

employing a fixed learning rate η.346

GTAN [22]347

In this work, the authors note that in real-world applications, only a small portion of transactions348

are labeled as fraudulent or nonfraudulent. This lack of labeled data makes it difficult to train349

effective machine-learning models for fraud detection.350

To address this challenge, the authors propose a semisupervised learning approach that leverages351

both labeled and unlabeled data. Their method, called attribute-driven graph representation learn-352

ing, uses the attributes of transactions to construct a graph and then applies graph representation353

learning to capture the complex relationships between transactions. By employing this approach,354

the model can learn from both labeled and unlabeled data, thereby enhancing its capacity to identify355

fraudulent transactions.356

The model is designed to handle the challenge of limited labeled data in credit card fraud detec-357

tion by leveraging labeled and unlabeled data in a semisupervised learning approach. The technical358

contributions can be summarized as follows:359
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• Attribute embedding and feature learning: The authors introduce a novel approach for trans-360

forming the numerical attributes of each record into a tensor format, symbolized as Xnum ∈361

RN×d. Here, N is the total count of transactions, and d represents the dimensions of the362

features. They adopt distinct attribute embedding layers to formulate categorical attributes363

into a separate matrix Xcat ∈ RN×ds. These embeddings are then merged to form a compre-364

hensive categorical representation of each transaction, computed by add-pooling as x(u)cat =365 ∑
ix(u)cat, i, where i encompasses various categories such as card, transaction, and merchant.366

The notation x(u)cat ∈ R1×d signifies the aggregated category embedding vector for each367

transaction record indexed by u.368

• Gated temporal attention networks: The authors utilize a sequence of transaction embeddings,369

denoted as X = {xt0, xt1, ...xtn}, to capture the temporal dynamics of each transaction. This370

is achieved by integrating both categorical and numerical attributes as inputs to the gated371

temporal attention network (GTAN). The formulation is given by xti = x
(ti)
num+x

(ti)
cat . Initially,372

at the first temporal graph attention layer, H0 = X is set as the base input embedding matrix.373

They apply a multihead attention mechanism to evaluate the importance of each neighboring374

transaction and accordingly update the embeddings, enhancing the model’s ability to discern375

relevant temporal patterns.376

• Risk embedding and propagation: The authors suggest embedding the partially observable377

risk attributes (or labels) into a unified feature space to align them with other node features.378

This process involves creating risk embedding vectors for nodes with labels and assigning zero379

vectors for those without. The combined node features, now inclusive of risk embeddings, are380

represented as xti = x
(ti)
num + x

(ti)
cat + ŷ(t1)Wr, with Wr denoting the tunable parameters for381

risk embedding. This method allows for a more nuanced incorporation of risk factors into the382

overall feature set, potentially enhancing the model’s predictive accuracy.383

• Fraud risk prediction techniques: Upon aggregating the transaction embeddings, the authors384

utilize a sophisticated 2-layer multi-layer perceptron (MLP) to estimate fraud risk. This pro-385

cess is articulated as ŷ = σ(PReLU(HW0 + b0)W1 + b1), where ŷ ∈ RN×1 encapsulates the386

predicted risk levels for all transactions. The parameters W and b are adjustable within the387

MLP, allowing the model to fine-tune its predictions based on the learned embeddings. This388

advanced prediction methodology is expected to yield more accurate and reliable fraud risk389

assessments.390

Insurance fraud detection391

InfDetect [32]392

The InfDetect paper introduces a large-scale, graph-based fraud detection system for e-commerce393

insurance that leverages advanced graph learning techniques. This approach employs both super-394

vised and unsupervised graph learning algorithms, including DeepWalk (unsupervised), graph neural395

networks (supervised and semisupervised node classification), and DistRep (supervised edge classi-396

fication), to analyze complex fraud patterns in e-commerce transactions.397
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Various graph types, such as device-sharing, transaction, and friendship graphs, are analyzed.398

The system preprocesses these graphs to optimize classification performance by removing isolated399

accounts. Additionally, the data processing phase involves feature collection and processing, em-400

ploying techniques such as data scaling, categorical feature encoding, and denoising autoencoder401

(DAE) for unsupervised feature transformation.402

The system’s primary objective is to identify fraudsters in the claim stage by classifying accounts403

or orders as fraudulent. The methodology is particularly effective in detecting fraudster gangs us-404

ing graph learning techniques. The paper includes both qualitative and quantitative evaluations,405

demonstrating the system’s enhanced fraud detection capabilities over traditional rule-based meth-406

ods. This novel approach contributes substantially to the field of fraud detection in e-commerce,407

showcasing the power of graph learning in uncovering and analyzing fraudulent activities.408

Anti–money laundering409

This subsection delves into two sophisticated anti–money laundering (AML) methods: Scalable410

graph learning and GraphSense. Scalable graph learning employs graph convolutional neural net-411

works to analyze complex financial networks, tackling challenges in large, noisy datasets. It empha-412

sizes graph compression and neural network scalability. GraphSense, on the other hand, analyzes413

Bitcoin transactions related to ransomware using graph-based methodologies, focusing on transac-414

tion and cluster analysis in the Bitcoin blockchain. Both methods highlight innovative approaches415

to combating financial crimes through advanced data analysis techniques.416

Scalable graph learning [33]417

As to AML, there is a “needle-in-a-haystack” problem of entity classification and hidden pattern418

discovery in extensive, constantly changing, high-dimensional, time-series transaction datasets with419

high noise-to-signal ratios, combinatorial complexity, and nonlinearity. Datasets frequently exhibit420

fragmentation, inaccuracy, incompleteness, and inconsistency, both within individual organizations421

and across them. Automating the synthesis of information from diverse data streams proves to be a422

formidable challenge, often necessitating the involvement of human analysts who may have limited423

resources at their disposal.424

Moreover, The challenge of AML involves dealing with vast, high-dimensional graph data that425

map billions of relationships (edges) among millions of entities (nodes). In the realm of AML426

transaction monitoring, a node entity can represent either an individual account or a collection of427

linked accounts whose connections are already established or inferred through clustering. The known428

attributes encompass explicitly defined data, constituting information that has been specifically429

collected through standard “know your customer” procedures or multimodal data extracted from430

public or partner information sources. This category also includes observable transactions and any431

accompanying flags or suspicious activity reports that have been filed. These challenges highlight432

the complexity and scale of the problem, as well as the societal impact of failing to effectively address433

it.434

The technical contribution of this paper is centered around the use of scalable graph convolutional435
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neural networks for forensic analysis of financial data in AML. The paper discusses some key concepts436

and results:437

• Graph compression with Ligra+: The researchers applied a graph compression tool called438

Ligra+ and conducted experiments on both a simulated AML graph and several deep learning439

benchmark graphs. Ligra+ serves as a compression system that aims to reduce space usage440

while maintaining competitive or improved performance compared to running algorithms on441

uncompressed graphs using multicore machines. The researchers managed to obtain a com-442

pression ratio of up to 2 ×, although compressing larger graphs presents greater challenges.443

This development creates the potential for memory-efficient training and inference in deep444

neural networks by harnessing compression and reordering techniques.445

• Scalable graph convolutional neural networks: The authors offer an initial exploration of scal-446

able graph convolutional neural networks for the forensic analysis of vast, dense, and ever-447

changing financial data. They present preliminary experimental findings based on a sizable448

synthetic graph generated by their proprietary data simulator, known as AMLSim, featuring449

1 million nodes and 9 million edges.450

• High efficiency: The paper explores prospects for achieving high efficiency in both computation451

and memory usage, and it also provides findings from a straightforward experiment involving452

graph compression. The outcomes of the study substantiate the initial hypothesis that em-453

ploying graph deep learning for AML holds considerable potential in combating illicit financial454

practices.455

GraphSense [34]456

The GraphSense paper introduces a novel methodology for analyzing Bitcoin transactions related to457

ransomware using advanced graph learning techniques. This approach extends beyond traditional458

clustering heuristics and is applied to 35 different ransomware families. Key to this methodology are459

2 different types of network representations over the entire Bitcoin blockchain: the address graph and460

the cluster graph. The address graph represents each Bitcoin address as a vertex and each transaction461

as a directed edge, facilitating the computation of summary statistics, such as transaction numbers462

and value flows. The cluster graph partitions addresses into maximal subsets or clusters, likely463

controlled by the same real-world actor, using the multiple-input clustering heuristic. This method464

contributes substantially to dataset expansion, identifying numerous Bitcoin addresses associated465

with ransomware attacks and tracing their outgoing relationships to key addresses. Furthermore,466

it assesses the minimum direct financial impact of each ransomware family by analyzing monetary467

flows to these key addresses. Implemented on the open-source GraphSense platform, this approach468

enables comprehensive transaction extraction and analysis, offering new insights into the ransomware469

economy and enhancing the understanding of its financial implications through graph analysis.470
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Supervised Approaches471

Overview472

Supervised graph learning techniques for financial fraud detection employ labeled data, which com-473

prises instances of both genuine and fraudulent financial activities, to train models. These labeled474

datasets serve as foundational knowledge, allowing graph learning models to learn intricate pat-475

terns and relationships indicative of fraud and other financial risks. The strength of supervised476

graph learning techniques lies in their ability to achieve high precision in detecting and categorizing477

financial activities based on past labeled examples.478

The following applications represent notable areas where supervised graph learning techniques479

have been extensively applied.480

• Credit/loan risk assessment: Supervised graph learning techniques are used to evaluate the481

potential risk associated with lending money to individuals and institutions. By analyzing past482

borrowing behavior and related financial activities, these models can predict the likelihood of483

timely loan repayment, aiding financial institutions in making informed lending decisions.484

• Loan default analysis: In this domain, supervised models analyze transactional data and fi-485

nancial histories to predict the probability of a borrower defaulting on a loan. Such insights486

can guide lenders in devising risk mitigation strategies and shaping their lending policies.487

• Insurance fraud detection: Insurance claims come with diverse data points, from personal488

histories to event details. Supervised graph learning techniques parse this data to identify489

patterns that might indicate fraudulent insurance claims, ensuring that insurers can validate490

claims with higher accuracy.491

• Credit card fraud detection: Given the vast amounts of daily credit card transactions, detect-492

ing fraudulent activities requires models that can rapidly and accurately identify suspicious493

patterns. Supervised graph learning techniques, trained on historical instances of fraud, excel494

in pinpointing such activities amidst a sea of legitimate transactions.495

• Anti–money laundering: While semisupervised methods are crucial for AML due to evolving496

money laundering tactics, supervised graph learning techniques play a vital role when there497

is a substantial amount of labeled data on known laundering techniques. These models can498

detect and flag transactions that align with known illicit money movement strategies, acting499

as a first line of defense.500

The application of supervised graph learning techniques spans a broad spectrum of financial501

domains, offering tools that are both precise and responsive to the intricacies of each application.502

Credit/loan risk assessment503

In this subsection, we delve into 3 cutting-edge methodologies. First, Tem-GNN [35] is notably504

adept at extracting credit risk insights from dynamic graphs. The high-order graph attention rep-505

resentation (HGAR) [36] approach employs a higher-order graph attention mechanism to discern506

15

D
ow

nloaded from
 https://spj.science.org on A

ugust 15, 2025



the potential of loan defaults. Lastly, DGANN [37] introduces an end-to-end dynamic graph neural507

network for predicting risks associated with networked loans.508

Tem-GNN [35]509

The authors highlight 3 challenges in credit risk prediction from temporal graphs: time interval510

irregularity, integration of structural and temporal information, and static and short-term temporal511

factors. In response, the Tem-GNN model integrates a pathway for static factors, short-term graph512

encoders, and a time-series model. Key features include:513

• Static feature learning model: Using an MLP, the model extracts stable user features and514

projects them into a high-level space.515

• Short-term graph encoder: This encoder focuses on recent neighbor information through a516

graph convolution module.517

• Temporal Model: The model incorporates an interval-decayed attention mechanism defined518

as:519

α′(t) =
exp(s′(ht))∑

i∈{0,1,...,T} exp(s
′(hti))

, (8)

where s′(ht) is the output of a single-layer feed-forward neural network with a tanh activation520

function. To handle interval irregularity:521

g(δt) =
1

log(e+ δt)
, (9)

where δt is the time interval between the event t and now.522

• User embedding and risk score calculation: The method utilizes temporal attention to define523

the user embedding and an MLP for risk score prediction.524

HGAR [36]525

The authors of this work note that companies are allowed to guarantee each other to enhance loan526

security, but when more and more companies are involved, they form complex guarantee networks.527

These complex structures can be a double-edged sword for the economy, especially during economic528

downturns, when many companies may fail to repay loans, causing a domino effect of defaults.529

To address this challenge, the paper proposes a high-order graph attention representation method530

(HGAR) for the default risk assessment of networked guarantee loans. The main contributions of531

HGAR can be summarized as follows:532

• Dual roles of nodes: Nodes in the guarantee network have dual roles, guarantor and guarantee.533

• Graph attentional layer: This layer captures node importance in a network.534

• High-order adjacent approximation: This approximation preserves dual node roles and high-535

order adjacency.536
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• Loan default prediction layer: This layer uses both first-order and high-order attentional rep-537

resentation for default prediction.538

DGANN [37]539

Loans from commercial banks form complex directed-network structures, thus an adaptive strategy540

to efficiently identify and address any systematic crises is necessary. Therefore, the authors propose541

an end-to-end dynamic graph-based attention neural network (DGANN) to predict risk guarantee542

relationships among lenders by learning on the interconnected loans in a network. Their approach543

can be split into 3 parts:544

• Graph convolution network (GCN) with structure attention: Uses temporal guarantee net-545

works for high-order graph representation.546

• Graph recurrent network (GRN) with temporal attention: Extracts edge attributes and learns

temporal patterns. The model updates the hidden state as:

rt = σ(Wr ∗ [ht−1, et]), (10)

zt = σ(Wz ∗ [ht−1, et]), (11)

êh = tanh(We ∗ [rt ⊙ ht−1, et]), and (12)

ht = (1− zt)⊙ ht−1 + zt ⊙ êh, (13)

where rt and zt denote the reset and update gates of the tth object respectively, êh represents547

the representation of the candidate hidden layer, and W are the weights dynamically updated548

during the model training phase.549

• Prediction layer: Estimates risk probability with a global view of guarantee networks.550

Loan default analysis551

In this subsection, we delve into 2 methods for loan default prediction. Formally, the loan default552

prediction task falls under detection of node anomalies and edge anomalies in the loan network. The553

ST-GNN [38] targets small and medium-sized enterprises (SMEs), addressing data deficiency issues554

often seen with online financial institutions. By adeptly extracting genuine supply chain relationships555

from the SME graph, this approach enhances loan default prediction accuracy. Conversely, AMG-556

DP [39] emphasizes the intricate properties intrinsic to loan default prediction: communicability,557

complementation, and induction. By leveraging relation-specific layers and attention mechanisms,558

AMG-DP ensures precise predictions, even for new users with sparse data.559

ST-GNN [38]560

This research addresses data scarcity in financial risk analysis for SMEs, particularly in online561

financial institutions such as Ant Financial and WeBank, where acquiring credit-related SME data562

is challenging.563
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Key concerns include extracting authentic supply chain relationships from the SME graph and564

using these relationships in financial risk analysis. The solution involves 2 components:565

• Spatial-temporal aware graph neural network (ST-GNN): Designed to capture both the local566

graph structure and temporal dynamics of the SME graph, ST-GNN is trained in a semisu-567

pervised manner for link prediction, and focuses on identifying genuine supply chain links. It568

assigns confidence scores to each edge, refining the SME graph into a supply-chain graph by569

removing low-confidence edges.570

• Loan default prediction module: Utilizing the refined supply-chain graph, this module aggre-571

gates data from neighboring SMEs into a target SME, enabling more accurate financial risk572

assessments. The method incorporates ST-GNN for supervised node classification to predict573

future loan repayment failures of SMEs.574

In summary, ST-GNN efficiently extracts supply chain relationships and predicts loan defaults575

for SMEs, offering a novel approach in the realm of financial risk analysis for SMEs.576

AMG-DP [39]577

There are 3 key intrinsic properties of the problem of loan default prediction:578

• Communicability: The patterns of loan default behaviors are discerned through the examina-579

tion of the local network structure.580

• Complementation: Describing the profile of a financial defaulter is intricate and challenging to581

capture comprehensively with just one source of information, particularly for new users who582

have limited prior behavioral data.583

• Induction: In practical financial scenarios, new users emerge on a daily basis, necessitating584

models to retain the capacity to make predictions for this category of users who possess only585

limited profile information.586

Previous solutions have been ineffective in harnessing multiplex relationships in financial settings,587

thus have neglected these crucial inherent features of loan default detection. The authors propose588

a novel attributed multiplex graph-based loan default prediction approach (AMG-DP) to address589

these issues. The authors also acknowledge that the factors leading a user to fail in meeting re-590

quired repayments are intricate and that expressing such multiplex information is challenging with591

feature-based approaches. The AMG-DP model is designed with relation-specific receptive layers592

that utilize an adaptive breadth function to integrate vital information obtained from the local593

structure in each facet of the AMG. Additionally, the model incorporates multiple propagation lay-594

ers to investigate higher-order connectivity information. It leverages a relation-specific attention595

mechanism to highlight pertinent information throughout the end-to-end training process.596

The adaptive fusion function is implemented with a relation-specific attention mechanism, which597

is formulated as follows:598
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αu,r =
exp(γr tanh(Wγhu + bγ))∑

r′∈R exp(γr′ tanh(Wγhu + bγ))
, (14)

where {Wγ , bγ , γr} form the parameter set of the adaptive fusion function. The function tanh(·) is599

used as the activation function.600

The relation-specific receptive layer is formulated as follows:601

αu,i =
exp(vTr tanh(W

(l)
r [h

(l−1)
u ||h(l−1)

i ||e(l−1)
u,i ]))∑

(u,j)∈Er
exp(vTr tanh(W

(l)
r [h

(l−1)
u ||h(l−1)

j ||e(l−1)
u,j ]))

. (15)

The final user representation is calculated as follows:602

zu =
∑
r∈R

αu,r · hu,r. (16)

The model has been evaluated on a large-scale real-world dataset and has shown effectiveness603

compared with state-of-the-art models. The model also has the inductive ability to predict whether604

new users are likely to default on loans by aggregating their neighbors with multiplex relations.605

Insurance fraud detection606

Network learning [40]607

This paper focuses on the detection and prevention of fraudulent insurance claims, particularly those608

made by organized groups of fraudsters. This issue is important in the context of Alibaba’s return-609

freight insurance, which faces numerous potentially fraudulent claims daily. Deliberate misuse of610

the insurance policy can result in substantial financial losses. The paper outlines 3 key challenges611

in fraud detection:612

• Concept drift: This term describes the situation in which new forms of fraud emerge over time613

and become progressively less predictable. This primarily happens because fraud detection614

systems use changing features that do not stay constant.615

• Label uncertainty: In the past, the rule-based fraud detection system assigned a risk tag to616

each account, but it is uncertain if the accounts labeled as ‘no observable risk’ are genuinely617

risk-free or not.618

• Excessive human effort: Traditional insurance fraud detection settings require considerable619

human effort for labeling and evaluation tasks. The authors aim to focus on automated risk620

control that requires negligible human effort, except for a periodical evaluation conducted by621

insurance professionals.622

Importantly, to uncover organized fraudsters and capture complex relations among colluding623

fraudsters, the paper constructs 3 types of graphs: the device-sharing graph, the transaction graph,624

and the friendship graph.625
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• Device-sharing graph: This graph reveals the relations between accounts that share a device.626

It consists of 2 types of vertices: device vertices (representing user machine IDs, UMIDs) and627

account vertices. Edges exist between device vertices and account vertices, indicating the log-628

in activities in the history. The device-sharing graph captures the device-sharing relationships629

among fraudsters and regular customers.630

• Transaction graph: This graph represents the fund exchange relations between accounts. It631

consists of account vertices and edges that indicate the existence of established transactions632

between accounts. The transaction graph provides information about financial interactions633

between fraudsters and regular customers.634

• Friendship graph: This graph is built based on the friendship relationships at Alipay, a product635

of Ant Financial that has social networking features. It captures the social connections between636

accounts. The friendship graph can reveal social networks and connections among fraudsters637

and regular customers.638

The paper compares and analyzes these graphs to determine which is most suitable for fraud de-639

tection. Specifically, it focuses on the device-sharing graph, which exhibits contrasting patterns640

between colluding fraudsters and regular customers.641

Credit card fraud detection642

Researchers have presented techniques to enhance detection rates for credit card fraud detection.643

Among these are the pick-and-choose GNN (PC-GNN) [41] approach, which seeks to address the class644

imbalance through a supervised GNN-based approach; the MAHINDER [42] model, a unique tool645

that capitalizes on multi-view attributed heterogeneous information networks to detect defaulters;646

and HACUD [43], a dedicated method that utilizes a hierarchical attention mechanism for cash-out647

user detection in an attributed heterogeneous information network.648

PC-GNN [41]649

The primary challenge tackled by the PC-GNN paper is the issue of imbalanced classes in graph-650

based fraud detection. This problem arises due to the considerable disparity between the number of651

instances of the majority class (nonfraudulent entities) and the minority class (fraudulent entities).652

This imbalance often leads to poor performance of detection algorithms, particularly for the minority653

class (i.e., the fraudsters), which is more important.654

The paper illustrates 3 key challenges in creating graph neural networks for fraud detection that655

grapple with class imbalance:656

• Redundant link information: Fraudsters often employ deceptive tactics, such as camouflaging657

their activities by generating misleading information, to make identifying them more challeng-658

ing. For example, spammers may utilize legitimate accounts to post spammy reviews, creating659

numerous connections between the spam reviews and genuine users, effectively concealing their660

true intentions within the pool of legitimate users.661
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• Lack of necessary link information: Perpetrators of fraud usually avoid trading with each other662

to escape being caught together. For instance, in financial situations, individuals engaging in663

fraud would steer clear of conducting transactions with each other to evade joint detection.664

Therefore, there might not exist a connection between the 2 nodes, which can negatively impact665

the performance of methods based on GNNs.666

• Dilution of minority class features: This difficulty arises during the process of gathering mes-667

sages in GNNs, and can result in the dilution of features associated with the minority class.668

In imbalanced settings, it is common for most of the neighbors connected to a central node to669

belong to the majority class. Consequently, the characteristics of fraudulent neighbors can be670

easily neglected, and predictions can be heavily influenced by the benign majority.671

To address these challenges, the paper proposes a graph-learning-based imbalanced learning672

approach for graph-based fraud detection. A label-balanced sampler is designed to select nodes673

and edges for training. The probability assigned for each node is inversely proportional to its label674

frequency. This ensures that nodes from the minority class are more likely to be chosen. To address675

application challenges, the paper suggests using a neighborhood sampler to select neighbors based on676

a distance function with adjustable parameters. To focus on the fraud-labeled nodes, unnecessary677

links can be removed by selecting neighbors that are distant from the target based on distance678

measurements. Meanwhile, essential links that contribute to fraud prediction can be established by679

selecting nodes similar to the fraud class and considering them as neighbors. Specifically, the 3 steps680

of the PC-GNN framework can be described as follows:681

• Pick: The central nodes are chosen using a balanced sampler to create a well-balanced sub-682

graph for training in minibatches. This step helps to ensure that the minority class is suffi-683

ciently represented in the training process.684

• Choose: With a distance function that can be adjusted using parameters, the neighborhood685

of the minority class is sampled more than required, and that of the majority class is sampled686

less. This step helps to ensure that the model is exposed to a balanced representation of the687

classes during training.688

• Aggregate: Messages from chosen neighbors and various relationships are combined to obtain689

the ultimate representations of the target. This step helps to ensure that the model captures690

the relevant information from the graph structure for the prediction task.691

MAHINDER [42]692

The problem of detecting default users on online payment service platforms has at least one of these693

2 challenges: (a) It is challenging to capture the inherent aspects of default users, and there is an694

urgent need for a more accurate approach to modeling user profiles. (b) Criminals engaging in illicit695

activities might intentionally create intricate behaviors, such as moving money between numerous696

users and attempting to lengthen the money transfer path to evade regulations. This adversarial697

nature of financial default makes it challenging to detect.698
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It is important to mention that the current task involves identifying users at risk of default using699

multiview data from diverse information networks. This particular approach has not been explored700

previously.701

Therefore, the authors proposed a novel approach called MAHINDER (Multiview Attributed702

Heterogeneous Information Network based financial DEfault useR detection) to address these chal-703

lenges. MAHINDER uses multiple user relationships to construct a multiview attributed heteroge-704

neous information network (MAHIN) for better user profile modeling. It also takes into account the705

local structures of assigned metapaths to extract detailed behavioral patterns at a finer level. The706

main contribution of MAHINDER can be summarized as follows:707

• Problem Statement: The issue of identifying financial defaulters is structured as a binary classi-708

fication problem within a multiview attributed heterogeneous information network (MAHIN).709

Given a MAHIN G = {V,E,XV , XE} consisting of m specific views, the purpose is to detect710

defaulters from the target user set U ⊆ V . Each user u ∈ U is assigned a label yu ∈ {0, 1} to711

indicate whether they are a defaulter or not.712

• The MAHINDER Model: The MAHINDER model is proposed to address the challenges of713

detecting default users. The model uses multiple user relationships to construct an MAHIN714

for better user profile modeling. The approach also takes into account the nearby patterns715

of assigned metapaths to uncover detailed behavioral trends. The model uses metapaths716

from different perspectives to comprehensively model user profiles. It also includes a path717

encoder based on metapaths to grasp the local structural patterns present in both nodes and718

links. Attention mechanisms are used at various levels, including nodes, links, and meta-719

paths, to automatically determine the importance of different elements. The MAHINDER720

model includes attention mechanisms to meticulously model the selected paths. There is an721

additional attention layer applied to different metapaths to filter out irrelevant perspectives.722

HACUD [43]723

The authors address the challenge of detecting cash-out fraud in credit payment services, an impor-724

tant fraud problem in financial services. Cash-out fraud involves users seeking cash gains through725

illegal or insincere means. The authors state that conventional detection methods rely mainly on726

the statistical features of users and often overlook the interaction relations between them. They727

propose modeling the problem as a classification task in an attributed heterogeneous information728

network (AHIN) and introduce the hierarchical attention-based cash-out user detection (HACUD)729

model, which uses metapath-based neighbors and a hierarchical attention mechanism.730

The HACUD model is detailed as follows:731

• Feature transformation: The original user features are transformed into latent representations.732

The transformation function is:733

f ′ = σ(Wf + b), (17)

where W is the weight matrix, b is the bias vector, σ is the activation function (ReLU is used),734

and f is the original feature vector.735
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• Neighbor feature fusion: The latent representations of a user and their neighbors, derived from736

each metapath, are combined. The fusion function g(·, ·) can be concatenation, addition, or737

element-wise product.738

• Hierarchical attention mechanism: Different users may have different preferences over features739

based on metapaths and attribute information. The attention weight of metapath ρ for user740

u is:741

βu,ρ =
exp(zTρ f

′′
uC)∑

exp(zTρ f
′′
uC)

, (18)

where zρ is the importance of metapath ρ and f ′′
uC is the representation of neighbors for user742

u based on metapath ρ.743

• Model learning: The model aims to minimize the loss function:744

L(Θ) =
∑

(yu log(pu) + (1− yu) log(1− pu)) + λ||Θ||22, (19)

where yu and pu are the ground truth and predicted cash-out probability of user u, respectively,745

Θ is the model’s parameter set, and λ is the regularizer parameter. The model is trained using746

SGD or one of its variants.747

Anti–money laundering748

GAGNN [21]749

The main challenge addressed in this paper is the detection of money laundering activities in large-750

scale transaction networks. Traditional methods for detecting money laundering often fail to capture751

the complex and evolving patterns of these activities. Moreover, they often suffer from high false-752

positive rates and are unable to effectively leverage the rich relational information in transaction753

networks.754

To address these challenges, the authors propose the group-aware graph neural network (GAGNN)755

as part of their novel deep graph learning framework, which is designed to capture group-level money756

laundering patterns. The framework is capable of learning the complex and evolving patterns of757

money laundering activities, reducing false positives, and effectively leveraging the rich relational758

information in transaction networks.759

The technical contributions of this paper can be summarized as follows:760

• Group-aware graph neural network: The authors propose a novel graph neural network model,761

GAGNN, which is designed to capture the group structure in financial transactions. The model762

is defined by the following equation:763

h(l+1)
v = σ

W (l) · CONCAT

h(l)
v ,

1

|N (v)|
∑

u∈N (v)

h(l)
u ,

1

|G(v)|
∑

g∈G(v)

h(l)
g

 , (20)

where h
(l+1)
v is the hidden state of node v at layer l + 1, σ is the activation function, W (l)

764
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is the weight matrix at layer l, CONCAT is the concatenation operation, N (v) is the set of765

neighbors of node v, G(v) is the set of groups that node v belongs to, h
(l)
u is the hidden state766

of node u at layer l, and h
(l)
g is the hidden state of group g at layer l.767

• Group embedding: The authors introduce a method to learn the embedding of groups. The768

group embedding is computed as the average of the embeddings of the nodes in the group.769

The group embedding is updated during the training process. The group embedding is defined770

by the following equation:771

h(l+1)
g =

1

|V(g)|
∑

v∈V(g)

h(l+1)
v , (21)

where h
(l+1)
g is the hidden state of group g at layer l + 1, V(g) is the set of nodes in group g,772

and h
(l+1)
v is the hidden state of node v at layer l + 1.773

• Group-aware loss function: The authors propose a group-aware loss function to train the774

GAGNN model. The loss function encourages the model to assign similar labels to the nodes775

in the same group. The group-aware loss function is defined by the following equation:776

L = Lnode + λLgroup, (22)

where Lnode is the node classification loss, Lgroup is the group consistency loss, and λ is a777

hyperparameter to balance the 2 terms.778

Discussion and Future Work779

Rise of financial fraud gangs780

Traditionally, financial fraud was often committed by individuals or small groups acting in isolation.781

However, with the advancement of technology and the increasing sophistication of fraudsters, we are782

now seeing the emergence of large-scale, organized financial fraud gangs. These gangs often have783

complex structures and employ advanced techniques, making their activities harder to detect and784

prevent. Although similar issue has been noticed and discussed, there is still a need for further785

research on detection algorithms [47].786

To tackle this challenge, future research could focus on developing more sophisticated detection787

algorithms that are capable of identifying complex patterns and relationships indicative of organized788

fraud. This development could involve the use of advanced machine learning techniques, including789

deep learning and graph neural networks, which are capable of modeling complex structures and790

relationships. Additionally, cooperation between financial institutions and regulatory bodies could791

be enhanced to share information and intelligence about suspected fraud gangs.792

Sensitivity and complexity of financial data793

Graph data, representing entities (e.g., individuals, accounts) as nodes and relationships (e.g., trans-794

actions, connections) as edges, is increasingly being used in financial fraud detection. However, this795
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type of data is often sensitive (due to privacy concerns) and complex (due to the large number796

of nodes and edges and the potential for complex relationships). This situation has been hindering797

traditional fraud detection, according to Sangers et al. [48]. Privacy and security are highly expected798

in graph data when detecting financial fraud.799

Future work could focus on developing methods for effectively and securely handling sensitive800

graph data. This could involve the use of privacy-preserving techniques, such as differential privacy801

or federated learning, which allow for the analysis of sensitive data while minimizing the risk of802

privacy breaches. Additionally, new methods for handling the complexity of graph data, such as803

scalable graph processing algorithms or graph simplification techniques, can be developed.804

Interpretability and robustness of GNN-based models805

Graph learning strategies such as the use of GNN-based models have shown great promise in finan-806

cial fraud detection due to their ability to model complex relationships in graph data. However,807

these models often lack interpretability, meaning it can be difficult to understand why they have808

made a particular prediction. Additionally, they may not be robust to changes in the data or to809

adversarial attacks. Much effort has been made in related research by using attention mechanisms810

and designing feature extraction methods [49, 50]. At the same time, financial fraud detection calls811

for interpretability due to the complexity of the data.812

To address the interpretability challenge, future work can focus on developing methods for ex-813

plaining the predictions of graph learning models. This can involve the use of techniques such as814

local interpretable model-agnostic explanations (LIME) or Shapley additive explanations (SHAP),815

which provide insights into the contribution of each feature to a model’s prediction. To improve816

the robustness of graph learning models, we can investigate methods for making these models more817

resistant to changes in the data or to adversarial attacks. These goals can be achieved by involving818

techniques such as adversarial training or robust optimization. Moreover, real-world graph data are819

usually dynamic and time-evolving. Dynamic GNNs [51, 52] can help model temporal dependencies820

in financial networks.821

Conclusion822

In this review, we have provided a comprehensive overview of the current landscape of financial823

fraud detection, with a particular focus on the use of graph learning techniques. We have traced824

the evolution of financial fraud from isolated events to complex, organized activities and discussed825

how this has necessitated a shift in detection methods. Then, we delved into the use of graph826

learning methods for financial fraud detection. We discussed how these methods, by modeling entities827

as nodes and relationships as edges, are able to capture the complex patterns and relationships828

inherent in financial fraud activities. We highlighted the advantages of graph learning methods829

over traditional methods, including their ability to handle heterogeneous data and their capacity for830

learning high-level features. However, we also acknowledged that the use of graph learning methods831

in financial fraud detection is not without its challenges. In the final part of our survey, we discussed832
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these challenges in detail, including the sensitivity and complexity of graph data and the issues of833

interpretability and robustness in models based on graph learning. We highlighted the need for834

methods that can handle sensitive graph data securely and efficiently, as well as techniques that can835

improve the interpretability and robustness of graph learning methods.836

In conclusion, while graph learning methods hold great promise for financial fraud detection,837

there are still many open research problems. Future research can focus on addressing the challenges838

we have identified, as well as exploring new methods and techniques for leveraging the power of839

graph learning methods. We hope that this survey will serve as a valuable resource for researchers840

and practitioners in this field and inspire further work in the fight against financial fraud.841
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